
EvalAI Documentation
Release 1.1

CloudCV Team

Jul 13, 2019

Contents

1 How to setup 3
1.1 Installation using Docker . 3
1.2 Ubuntu Installation Instructions . 3
1.3 Fedora Installation Instructions . 5
1.4 Windows Installation Instructions . 7

2 Creating a Challenge 9
2.1 Challenge creation using zip configuration . 9
2.2 Create challenge using web interface . 13

3 Writing Evaluation Script 15

4 Submission 17
4.1 How is a submission processed? . 17
4.2 How does submission worker function? . 17
4.3 How is submission made? . 18
4.4 Format of submission messages . 19
4.5 How workers process submission message . 19
4.6 Notes . 19

5 Architecture 21
5.1 Technologies that the project uses: . 21

6 Architectural Decisions 23
6.1 URL Patterns . 23
6.2 Processing submission messages asynchronously . 23
6.3 Submission Worker . 24

7 Directory Structure 25
7.1 Django Apps . 25
7.2 Settings . 25
7.3 URLs . 26
7.4 Frontend . 26
7.5 Scripts . 26
7.6 Test Suite . 26
7.7 Management Commands . 27

8 Tutorial to participate in a challenge in EvalAI 29
8.1 1. Visit evalai.cloudcv.org . 29

i

8.2 2. Sign up or Log in . 29
8.3 4. Choose challenge . 29
8.4 5. Challenge Page . 29
8.5 6. Create Participant Team . 29

9 Frequently Asked Questions 31
9.1 Q. How to start contributing? . 31
9.2 Q. What are the technologies that EvalAI uses? . 31
9.3 Q. Where could I learn Github Commands? . 32
9.4 Q. Where could I learn Markdown? . 32
9.5 Q. What to do when coverage decreases in your pull request? . 32
9.6 Common Errors during installation . 32

10 Migrations 37
10.1 Creating a migration . 37

11 Contributing guidelines 39
11.1 Setting things up . 39
11.2 Finding something to work on . 39
11.3 Instructions to submit code . 39

12 Pull Request 41

13 Glossary 43
13.1 Challenge . 43
13.2 Challenge Host . 43
13.3 Challenge Host Team . 43
13.4 Challenge Phase Split . 43
13.5 Dataset . 43
13.6 Dataset Split . 43
13.7 EvalAI . 44
13.8 Leaderboard . 44
13.9 Phase . 44
13.10 Participant . 44
13.11 Participant Team . 44
13.12 Submission . 44
13.13 Submission Worker . 44
13.14 Team . 44
13.15 Test Annotation File . 45

14 Indices and tables 47

ii

EvalAI Documentation, Release 1.1

Contents:

Contents 1

EvalAI Documentation, Release 1.1

2 Contents

CHAPTER 1

How to setup

EvalAI can run on Linux, Cloud, Windows, and macOS platforms. Use the following list to choose the best installation
path for you. The links under Platform take you straight to the installation instructions for that platform.

1.1 Installation using Docker

We recommend setting up EvalAI using Docker since there are only two steps involved. If you are not comfortable with
docker, feel free to skip this section and move to the manual installation sections given below for different operating
systems. Please follow the below steps for setting up using docker:

1. Get the source code on to your machine via git

git clone https://github.com/Cloud-CV/EvalAI.git evalai && cd evalai

2. Build and run the Docker containers. This might take a while. You should be able to access EvalAI at
localhost:8888.

docker-compose up --build

1.2 Ubuntu Installation Instructions

1.2.1 Step 1: Install prerequisites

• Install git

sudo apt-get install git

• Install postgres

sudo apt-get install postgresql libpq-dev

• Install rabbitmq

echo 'deb http://www.rabbitmq.com/debian/ stable main' | sudo tee /etc/apt/sources.
→˓list.d/rabbitmq.list
sudo apt-get update
sudo apt-get install rabbitmq-server

3

EvalAI Documentation, Release 1.1

• Install virtualenv

only if pip is not installed
sudo apt-get install python-pip python-dev build-essential
upgrade pip, not necessary
sudo pip install --upgrade pip
upgrade virtualenv
sudo pip install --upgrade virtualenv

1.2.2 Step 2: Get EvalAI code

If you haven’t already created an ssh key and added it to your GitHub account, you should do that now by following
these instructions.

• In your browser, visit https://github.com/Cloud-CV/EvalAI and click the fork button. You will need to be
logged in to GitHub to do this.

• Open Terminal and clone your fork by

git clone git@github.com:YOUR_GITHUB_USER_NAME/EvalAI.git evalai

Don’t forget to replace YOUR_GITHUB_USER_NAME with your git username.

1.2.3 Step 3: Setup codebase

• Create a python virtual environment and install python dependencies.

cd evalai
virtualenv venv
source venv/bin/activate
pip install -r requirements/dev.txt

• Rename settings/dev.sample.py as dev.py

cp settings/dev.sample.py settings/dev.py

• Create an empty postgres database and run database migration.

createdb evalai -U postgres
update postgres user password
psql -U postgres -c "ALTER USER postgres PASSWORD 'postgres';"
run migrations
python manage.py migrate

• For setting up frontend, please make sure that node(>=7.x.x), npm(>=5.x.x) and bower(>=1.8.x) are
installed globally on your machine. Install npm and bower dependencies by running

npm install
bower install

1.2.4 Step 4: Start the development environment

• To run backend development server at http://127.0.0.1:8000, simply do:

4 Chapter 1. How to setup

https://help.github.com/articles/connecting-to-github-with-ssh/
https://github.com/Cloud-CV/EvalAI
http://127.0.0.1:8000

EvalAI Documentation, Release 1.1

activate virtual environment if not activated
source venv/bin/activate
python manage.py runserver

• To run frontend development server at http://127.0.0.1:8888, simply do:

gulp dev:runserver

1.3 Fedora Installation Instructions

1.3.1 Step 1: Install prerequisites

• Install git

sudo yum install git-all

• Install postgres

sudo yum install postgresql postgresql-devel

If you still encounter issues with pg_config, you may need to add it to your PATH, i.e.

export PATH=$PATH:/usr/pgsql-x.x/bin

where x.x is your version, such as /usr/pgsql-9.5./bin.

• Install rabbitmq

use the below commands to get Erlang on our system:
wget http://dl.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-8.noarch.rpm
wget http://rpms.famillecollet.com/enterprise/remi-release-6.rpm
sudo rpm -Uvh remi-release-6*.rpm epel-release-6*.rpm
Finally, download and install Erlang:
sudo yum install -y erlang
Once we have Erlang, we can continue with installing RabbitMQ:
wget http://www.rabbitmq.com/releases/rabbitmq-server/v3.2.2/rabbitmq-server-3.2.2-1.
→˓noarch.rpm
rpm --import http://www.rabbitmq.com/rabbitmq-signing-key-public.asc
sudo yum install rabbitmq-server-3.2.2-1.noarch.rpm

• Install virtualenv

sudo yum -y install python-pip python-devel groupinstall 'Development Tools'
upgrade pip, not necessary
sudo pip install --upgrade pip
upgrade virtualenv
sudo pip install --upgrade virtualenv

1.3.2 Step 2: Get EvalAI code

If you haven’t already created an ssh key and added it to your GitHub account, you should do that now by following
these instructions.

1.3. Fedora Installation Instructions 5

http://127.0.0.1:8888
https://help.github.com/articles/connecting-to-github-with-ssh/

EvalAI Documentation, Release 1.1

• In your browser, visit https://github.com/Cloud-CV/EvalAI and click the fork button. You will need to be
logged in to GitHub to do this.

• Open Terminal and clone your fork by

git clone git@github.com:YOUR_GITHUB_USER_NAME/EvalAI.git evalai

Don’t forget to replace YOUR_GITHUB_USER_NAME with your git username.

1.3.3 Step 3: Setup codebase

• Create a python virtual environment and install python dependencies.

cd evalai
virtualenv venv
source venv/bin/activate
pip install -r requirements/dev.txt

• Rename settings/dev.sample.py as dev.py

cp settings/dev.sample.py settings/dev.py

• Create an empty postgres database and run database migration.

createdb evalai -U postgres
update postgres user password
psql -U postgres -c "ALTER USER postgres PASSWORD 'postgres';"
run migrations
python manage.py migrate

• For setting up frontend, please make sure that node(>=7.x.x), npm(>=5.x.x) and bower(>=1.8.x) are
installed globally on your machine. Install npm and bower dependencies by running

npm install
bower install

1.3.4 Step 4: Start the development environment

• To run backend development server at backend

activate virtual environment if not activated
source venv/bin/activate
python manage.py runserver

• To run frontend development server for at frontend

gulp dev:runserver

• To run backend development server at http://127.0.0.1:8000, simply do:

activate virtual environment if not activated
source venv/bin/activate
python manage.py runserver

• To run frontend development server at http://127.0.0.1:8888, simply do:

6 Chapter 1. How to setup

https://github.com/Cloud-CV/EvalAI
http://127.0.0.1:8000
http://127.0.0.1:8888
http://127.0.0.1:8000
http://127.0.0.1:8888

EvalAI Documentation, Release 1.1

gulp dev:runserver

1.3.5 Common Errors

Error: You need to install postgresql-server-dev-X.Y for building a server-side extension or libpq-dev for building a
client-side application.

Solution: Install libpq-dev

sudo apt-get install libpq-dev

Possible solutions for the same problem can be found at link.

1.4 Windows Installation Instructions

Setting up EvalAI on your local machine is really easy. Follow this guide to setup your development machine.

1.4.1 Step 1: Install prerequisites

• Install Python 2.x, Git, PostgreSQL version >= 9.4, RabbitMQ and virtualenv, in your computer, if you don’t
have it already.

1.4.2 Step 2: Get EvalAI Code

• Get the source code on your machine via git.

git clone https://github.com/Cloud-CV/EvalAI.git evalai

1.4.3 Step 3: Setup the codebase

• Create a python virtual environment and install python dependencies.

cd evalai
virtualenv venv
cd venv/scripts
activate.bat # run this command everytime before working on project
cd ../..
pip install -r requirements/dev.txt

• Rename settings/dev.sample.py as dev.py and change credential in settings/dev.py

cp settings/dev.sample.py settings/dev.py

Use your postgres username and password for fields USER and PASSWORD in dev.py file.

• Create an empty postgres database and run database migration. Make sure you have defined the PostgreSql path
to the Environment Variables.

createdb evalai

1.4. Windows Installation Instructions 7

http://stackoverflow.com/a/28938258/2534102

EvalAI Documentation, Release 1.1

Enter your password for authentication and a new database will be added.

python manage.py migrate

• Seed the database with some fake data to work with.

python manage.py seed

This command also creates a superuser(admin), a host user and a participant user with fol-
lowing credentials.

SUPERUSER- username: admin password: passwordHOST USER- username: host password:
passwordPARTICIPANT USER- username: participant password: password

1.4.4 Step 4: Start the development environment

• That’s it. Now you can run development server at http://127.0.0.1:8000 (for serving backend)

python manage.py runserver

• Open a new cmd window with node>=(7.0.0) installed on your machine and type

npm install

• Install bower(1.8.0) globally by running:

npm install -g bower

• Now install the bower dependencies by running:

bower install

• If you running npm install behind a proxy server, use

npm config set proxy http://proxy:port

• Now to connect to dev server at http://127.0.0.1:8888 (for serving frontend)

gulp dev:runserver

• That’s it, Open web browser and hit the url http://127.0.0.1:8888.

8 Chapter 1. How to setup

http://127.0.0.1:8000
http://127.0.0.1:8888
http://127.0.0.1:8888

CHAPTER 2

Creating a Challenge

One can create a challenge in EvalAI using either:

1. zip configuration

2. web interface

2.1 Challenge creation using zip configuration

2.1.1 Getting Started

Creating a challenge on EvalAI is a three-step process. You just need to upload the challenge details in a challenge
configuration file (YAML file) and we will take care of the rest.

The challenge configuration file on EvalAI consists of following fields:

• title: Title of the challenge

• short_description: Short description of the challenge (preferably 140 characters max)

• description: Long description of the challenge (use a relative path for the html file, e.g.
challenge_details/description.html)

• evaluation_criteria: Evaluation criteria and details of the challenge (use a relative path for the html file, e.g.
challenge_details/evaluation.html)

• terms_and_conditions: Terms and conditions of the challenge (use a relative path for the html file, e.g.
challenge_details/tnc.html)

• image: Logo of the challenge (use a relative path for the logo in the zip configuration, e.g.
images/logo/challenge_logo.jpg). Note: The image must be in jpg, jpeg or png format.

• submission_guidelines: Submission guidelines of the challenge (use a relative path for the html file, e.g.
challenge_details/submission_guidelines.html)

• evaluation_script: The evaluation script using which the submissions will be evaluated (path of the evaluation
script file or folder relative to this YAML file.)

• start_date: Start DateTime of the challenge (Format: YYYY-MM-DD HH:MM:SS, e.g. 2017-07-07 10:10:10)
in UTC timezone

• end_date: End DateTime of the challenge (Format: YYYY-MM-DD HH:MM:SS, e.g. 2017-07-07 10:10:10)
in UTC timezone

9

EvalAI Documentation, Release 1.1

• published: True/False (Boolean field that gives the flexibility to publish the challenge once approved by EvalAI
Admin. Default is False)

• allowed_email_domains: A list of domains allowed to participate in the challenge. Leave blank if everyone
is allowed to participate. (e.g. ["domain1.com","domain2.org","domain3.in"] Participants with
these email domains will only be allowed to participate.)

• blocked_emails_domains: A list of domains not allowed to participate in the challenge. Leave blank if every-
one is allowed to participate. (e.g. ["domain1.com","domain2.org","domain3.in"] The partici-
pants with these email domains will not be allowed to participate.)

• leaderboard:

A leaderboard for a challenge on EvalAI consists of following subfields:

– id: Unique integer field for each leaderboard entry

– schema: Schema field contains the information about the rows of the leaderboard. Schema contains two
keys in the leaderboard:

1. labels: Labels are the header rows in the leaderboard according to which the challenge ranking is done.

2. default_order_by: This key decides the default sorting of the leaderboard based on one of the labels
defined above.

The leaderboard schema for VQA Challenge 2017 looks something like this:

{
"labels": ["yes/no", "number", "others", "overall"],
"default_order_by": "overall"

}

The above schema of leaderboard for VQA Challenge creates the leaderboard web interface like this:

• challenge_phases:

10 Chapter 2. Creating a Challenge

EvalAI Documentation, Release 1.1

There can be multiple challenge phases in a challenge. A challenge phase in a challenge contains the following
subfields:

– id: Unique integer identifier for the challenge phase

– name: Name of the challenge phase

– description: Long description of the challenge phase (set relative path of the html file, e.g.
challenge_details/phase1_description.html)

– leaderboard_public: True/False (Boolean field that gives the flexibility to Challenge Hosts to make their
leaderboard public or private. Default is False)

– is_public: True/False (Boolean field that gives the flexibility to Challenge Hosts to either hide or show the
challenge phase to participants. Default is False)

– leaderboard_public: True/False (Boolean field that gives the flexibility to Challenge Hosts to either make
the leaderboard public or private. Default is False)

– is_submission_public: True/False (Boolean field that gives the flexibility to Challenge Hosts to
either make the submissions by default public/private. Note that this will only work when the
leaderboard_public property is set to true. Default is False)

– start_date: Start DateTime of the challenge phase (Format: YYYY-MM-DD HH:MM:SS, e.g. 2017-07-
07 10:10:10)

– end_date: End DateTime of the challenge phase (Format: YYYY-MM-DD HH:MM:SS, e.g. 2017-07-07
10:10:10)

– test_annotation_file: This file is used for ranking the submission made by a participant. An annotation
file can be shared by more than one challenge phase. (Path of the test annotation file relative to this YAML
file, e.g. challenge_details/test_annotation.txt)

– codename: Challenge phase codename. Note that the codename of a challenge phase is used to map
the results returned by the evaluation script to a particular challenge phase. The codename specified here
should match with the codename specified in the evaluation script to perfect mapping.

– max_submissions_per_day: Positive integer which tells the maximum number of submissions per day to
a challenge phase.

– max_submissions: Positive integer that decides the overall maximum number of submissions that can be
done to a challenge phase.

• dataset_splits:

A dataset in EvalAI is the main entity on which an AI challenge is based on. Participants are expected to make
submissions corresponding to different splits of the corresponding dataset. A dataset is generally divided into
different parts and each part is called dataset split. Generally, a dataset has three different splits:

1. Training set

2. Validation set

3. Test set

– id: Unique integer identifier for the dataset split

– name: Name of the dataset split (it must be unique for every dataset split)

– codename: Codename of dataset split. Note that the codename of a dataset split is used to map the results
returned by the evaluation script to a particular dataset split in EvalAI’s database. Please make sure that
no two dataset splits have the same codename. Again, make sure that the dataset split’s codename match
with what is in the evaluation script provided by the challenge host.

2.1. Challenge creation using zip configuration 11

EvalAI Documentation, Release 1.1

• challenge_phase_splits:

A challenge phase split is a relation between a challenge phase and dataset splits for a challenge (many to many
relation). This is used to set the privacy of submissions (public/private) to different dataset splits for different
challenge phases.

– challenge_phase_id: Id of challenge_phase (Gets the challenge phase details to map with)

– leaderboard_id: Id of leaderboard (Given above)

– dataset_split_id: Id of dataset split (Given above)

– visibility: Enter any of the positive integers given below.

a) HOST -> 1

b) OWNER AND HOST -> 2

c) PUBLIC -> 3

2.1.2 Sample zip configuration file

Here is a sample configuration file for a challenge with 1 phase and 2 dataset split:

title: Challenge Title
short_description: Short description of the challenge (preferably 140 characters)
description: description.html
evaluation_details: evaluation_details.html
terms_and_conditions: terms_and_conditions.html
image : logo.jpg
submission_guidelines: submission_guidelines.html
evaluation_script: evaluation_script.zip
start_date: 2017-06-09 20:00:00
end_date: 2017-06-19 20:00:00
published: True

leaderboard:
- id: 1
schema: {"labels": ["yes/no", "number", "others", "overall"], "default_order_by":

→˓"overall"}
- id: 2
schema: {"labels": ["yes/no", "number", "others", "overall"], "default_order_by":

→˓"yes/no"}

challenge_phases:
- id: 1
name: Challenge name of the challenge phase
description: challenge_phase_description.html
leaderboard_public: True
is_public: True
start_date: 2017-06-09 20:00:00
end_date: 2017-06-19 20:00:00
test_annotation_file: test_annotation.txt
codename: Challenge phase codename
max_submissions_per_day: 100
max_submissions: 1000

dataset_splits:
- id: 1
name: Name of the dataset split

12 Chapter 2. Creating a Challenge

EvalAI Documentation, Release 1.1

codename: codename of dataset split 1
- id: 2
name: Name of the dataset split
codename: codename of dataset split 2

challenge_phase_splits:
- challenge_phase_id: 1
leaderboard_id: 2
dataset_split_id: 1
visibility: 3

- challenge_phase_id: 1
leaderboard_id: 1
dataset_split_id: 2
visibility: 3

2.1.3 Challenge Creation Examples

Please see this repository for examples on the different types of challenges on EvalAI.

2.1.4 Next Steps

The next step is to create a zip file that contains the YAML config file, all the HTML templates for the challenge
description, challenge phase description, evaluation criteria, submission guidelines, evaluation script, test annotation
file(s) and challenge logo (optional).

The final step is to create a challenge host team for the challenge on EvalAI. After that, just upload the zip folder
created in the above steps and the challenge will be created.

If you have issues in creating a challenge on EvalAI, please feel free to create an issue on our Github Issues Page.

2.2 Create challenge using web interface

Todo: We are working on this feature and will keep you updated.

2.2. Create challenge using web interface 13

https://github.com/Cloud-CV/EvalAI-Examples

EvalAI Documentation, Release 1.1

14 Chapter 2. Creating a Challenge

CHAPTER 3

Writing Evaluation Script

Each challenge has an evaluation script, which evaluates the submission of participants and returns the scores which
will populate the leaderboard.

The logic for evaluating and judging a submission is customizable and varies from challenge to challenge, but the
overall structure of evaluation scripts are fixed due to architectural reasons.

Evaluation scripts are required to have an evaluate function. This is the main function, which is used by workers
to evaluate the submission messages.

The syntax of evaluate function is:

def evaluate(test_annotation_file, user_annotation_file, phase_codename, **kwargs):

pass

It receives three arguments, namely:

• test_annotation_file

This is the path to the annotation file for the challenge. This is the file uploaded by the Challenge Host while creating
a Challenge.

• user_annotation_file

This is the path of the file submitted by the user for a particular phase.

• phase_codename

This is the ChallengePhase model codename. This is passed as an argument, so that the script can take actions
according to the phase.

After reading the files, some custom actions can be performed. This varies per challenge.

The evaluate() method also accepts keyword arguments. By default, we provide you metadata of each submission
to your challenge which you can use to send notifications to your slack channel or to some other webhook service.
Following is an example code showing how to get the submission metadata in your evaluation script and send a slack
notification if the accuracy is more than some value X (X being 90 in the expample given below).

def evaluate(test_annotation_file, user_annotation_file, phase_codename, **kwargs):

submission_metadata = kwargs.get("submission_metadata")
print submission_metadata

Do stuff here
Let's set `score` to 90 as an example

15

EvalAI Documentation, Release 1.1

score = 91
if score > 90:

slack_data = kwargs.get("submission_metadata")
webhook_url = "Your Slack Webhook URL comes here"
To know more about slack webhook, checkout this link: https://api.slack.com/

→˓incoming-webhooks

response = requests.post(
webhook_url,
data=json.dumps({'text': "*Flag raised for submission:* \n \n" +

→˓str(slack_data)}),
headers={'Content-Type': 'application/json'})

Do more stuff here

The above example can be modified and used to find if some participant team is cheating or not. There are many more
ways for which you can use this metadata.

After all the processing is done, this script will send an output, which is used to populate the leaderboard. The output
should be in the following format:

output = {}
output['result'] = [

{
'dataset_split_1': {

'score': score,
}

},
{

'dataset_split_2': {
'score': score,

}
}

]
return output

output should contain a key named result, which is a list containing entries per dataset split that is available
for the challenge phase under consideration (In the function definition of evaluate shown above, the argument:
phase_codenamewill receive the codename for the challenge phase against which the submission was made). Each
entry in the list should be an object that has a key with the corresponding dataset split codename(dataset_split_1
and dataset_split_2 for this example). Each of these dataset split objects contains various keys (score in this
example), which are then displayed as columns in the leaderboard.

NOTE: dataset_split_1 and dataset_split_2 are codenames for dataset splits that should be
evaluated with each submission for the challenge phase obtained via phase_codename.

Note: If your evaluation script uses some precompiled libraries (MSCOCO for example), then make sure that the
library is compiled against a Linux Distro (Ubuntu 14.04 recommended). Libraries compiled against OSx or Windows
might or might not work properly.

16 Chapter 3. Writing Evaluation Script

CHAPTER 4

Submission

4.1 How is a submission processed?

We are using REST APIs along with Queue based architecture to process submissions. When a participant makes
a submission for a challenge, a REST API with url pattern jobs:challenge_submission is called. This
API does the task of creating a new entry for submission model and then publishes a message to exchange
evalai_submissions with a routing key of submission.*.*.

User makes --> API --> Publish --> RabbitMQ --> Queue --> Submission
a submission message Exchange worker(s)

Exchange receives the message and then routes it to the queue submission_task_queue. At the end of
submission_task_queue are workers (scripts/workers/submission_worker.py) which processes the submission
message.

The worker can be run with

assuming the current working directory is where manage.py lives
python scripts/workers/submission_worker.py

4.2 How does submission worker function?

Submission worker is a python script which mostly runs as a daemon on a production server and simply acts as a
python process in a development environment. To run submission worker in a development environment:

python scripts/workers/submission_worker.py

Before a worker fully starts, it does the following actions:

• Creates a new temporary directory for storing all its data files.

• Fetches the list of active challenges from the database. Active challenges are published challenges whose start
date is less than present time and end date greater than present time. It loads all the challenge evaluation scripts
in a variable called EVALUATION_SCRIPTS, with the challenge id as its key. The maps looks like this:

EVALUATION_SCRIPTS = {
<challenge_pk> : <evalutaion_script_loaded_as_module>,
....

}

17

EvalAI Documentation, Release 1.1

• Creates a connection with RabbitMQ by using the connection parameters specified in
settings.RABBITMQ_PARAMETERS.

• After the connection is successfully created, creates an exchange with the name evalai_submissions
and two queues, one for processing submission message namely submission_task_queue, and other for
getting add challenge message.

• submission_task_queue is then bound with the routing key of submission.*.* and add challenge
message queue is bound with a key of challenge.add.* Whenever a queue is bound to a exchange with
any key, it will route the message to the corresponding queue as soon as the exchange receives a message with
a key.

• Binding to any queue is also accompanied with a callback which basically takes a function as an argument. This
function specifies what should be done when the queue receives a message.

e.g. submission_task_queue is using process_submission_callback as a function, which means that
when a message is received in the queue, process_submission_callback will be called with the message
passed as an argument.

Expressing it informally it will be something like

Queue: Hey Exchange, I am submission_task_queue. I will be listening to messages from you on
binding key of submission.*.*

Exchange: Hey Queue, Sure! When I receive a message with a routing key of submission.*.*, I will
give it to you

Queue: Thanks a lot.

Queue: Hey Worker, Just for the record, when I receive a new message for submission, I want
process_submission_callback to be called. Can you please make a note of it?

Worker: Sure Queue, I will invoke process_submission_callback whenever you receive a new
message.

When a worker starts, it fetches active challenges from the database and then loads all the challenge evaluation scripts
in a variable called EVALUATION_SCRIPTS, with challenge id as its key. The map would look like

EVALUATION_SCRIPTS = {
<challenge_pk> : <evalutaion_script_loaded_as_module>,
....

}

After the challenges are successfully loaded, it creates a connection with the RabbitMQ Exchange
evalai_submissions and then listens on the queue submission_task_queue with a binding key of
submission.*.*.

4.3 How is submission made?

When the user makes a submission on the frontend, the following actions happen sequentially

• As soon as the user submits a submission, a REST API with the URL pattern
jobs:challenge_submission is called.

• This API fetches the challenge and its corresponding challenge phase.

• This API then checks if the challenge is active and challenge phase is public.

• It fetches the participant team’s ID and its corresponding object.

18 Chapter 4. Submission

EvalAI Documentation, Release 1.1

• After all these checks are complete, a submission object is saved. The saved submission object includes partic-
ipant team id and challenge phase id and username of the participant creating it.

• At the end, a submission message is published to exchange evalai_submissions with a routing key of
submission.*.*.

4.4 Format of submission messages

The format of the message is

{
"challenge_id": <challenge_pk_here>,
"phase_id": <challenge_phase_pk_here>,
"submission_id": <submission_pk_here>

}

This message is published with a routing key of submission.*.*

4.5 How workers process submission message

Upon receiving a message from submission_task_queue with a binding key of submission.*.*,
process_submission_callback is called. This function does the following:

• It fetches the challenge phase and submission object from the database using the challenge phase id and sub-
mission id received in the message.

• It then downloads the required files like input_file, etc. for submission in its computation directory.

• After this, the submission is run. Submission is initially marked in RUNNING state. The evaluate function
of EVALUATION_SCRIPTS map with key of the challenge id is called. The evaluate function takes in the
annotation file path, the user annotation file path, and the challenge phase’s code name as arguments. Running
a submission involves temporarily updating stderr and stdout to different locations other than standard
locations. This is done so as to capture the output and any errors produced when running the submission.

• The output from the evaluate function is stored in a variable called submission_output. Cur-
rently, the only way to check for the occurrence of an error is to check if the key result exists in
submission_output.

– If the key does not exist, then the submission is marked as FAILED.

– If the key exists, then the variable submission_output is parsed and DataSetSplit objects are
created. LeaderBoardData objects are also created (in bulk) with the required parameters. Finally, the
submission is marked as FINISHED.

• The value in the temporarily updated stderr and stdout are stored in files named stderr.txt and
stdout.txt which are then stored in the submission instance.

• Finally, the temporary computation directory allocated for this submission is removed.

4.6 Notes

• REST API with url pattern jobs:challenge_submission. Here jobs is application namespace and chal-
lenge_submission is instance namespace. You can read more about url namespace

4.4. Format of submission messages 19

https://docs.djangoproject.com/en/1.10/topics/http/urls/#url-namespaces

EvalAI Documentation, Release 1.1

20 Chapter 4. Submission

CHAPTER 5

Architecture

EvalAI helps researchers, students, and data scientists to create, collaborate, and participate in various AI challenges
organized around the globe. To achieve this, we leverage some of the best open source tools and technologies.

5.1 Technologies that the project uses:

5.1.1 Django

Django is the heart of the application, which powers our backend. We use Django version 1.10.

5.1.2 Django Rest Framework

We use Django Rest Framework for writing and providing REST APIs. Its permission and serializers have helped
write a maintainable codebase.

5.1.3 RabbitMQ

We currently use RabbitMQ for queueing submission messages which are then later on processed by a Python worker.

5.1.4 PostgreSQL

PostgreSQL is used as our primary datastore. All our tables currently reside in a single database named evalai

5.1.5 Angular JS

Angular JS is a well-known framework that powers our frontend.

21

EvalAI Documentation, Release 1.1

22 Chapter 5. Architecture

CHAPTER 6

Architectural Decisions

This is a collection of records for architecturally significant decisions.

6.1 URL Patterns

We follow a very basic, yet strong convention for URLs, so that our rest APIs are properly namespaced. First of all,
we rely heavily on HTTP verbs to perform CRUD actions.

For example, to perform CRUD operation on Challenge Host Model, the following URL patterns will be used.

• GET /hosts/challenge_host_team - Retrieves a list of challenge host teams

• POST /hosts/challenge_host_team - Creates a new challenge host team

• GET /hosts/challenge_host_team/<challenge_host_team_id> - Retrieves a specific chal-
lenge host team

• PUT /hosts/challenge_host_team/<challenge_host_team_id> - Updates a specific chal-
lenge host team

• PATCH /hosts/challenge_host_team/<challenge_host_team_id> - Partially updates a spe-
cific challenge host team

• DELETE /hosts/challenge_host_team/<challenge_host_team_id> - Deletes a specific
challenge host team

Also, we have namespaced the URL patterns on a per-app basis, so URLs for Challenge Host Model, which is in the
hosts app, will be

/hosts/challenge_host_team

This way, one can easily identify where a particular API is located.

We use underscore **_** in URL patterns.

6.2 Processing submission messages asynchronously

When a submission message is made, a REST API is called which saves the data related to the submission in the
database. A submission involves the processing and evaluation of input_file. This file is used to evaluate the
submission and then decide the status of the submission, whether it is FINISHED or FAILED.

23

EvalAI Documentation, Release 1.1

One way to process the submission is to evaluate it as soon as it is made, hence blocking the participant’s request.
Blocking the request here means to send the response to the participant only when the submission has been made and
its output is known. This would work fine if the number of the submissions made is very low, but this is not the case.

Hence we decided to process and evaluate submission message in an asynchronous manner. To process the messages
this way, we need to change our architecture a bit and add a Message Framework, along with a worker so that it can
process the message.

Out of all the awesome messaging frameworks available, we have chosen RabbitMQ because of its transactional nature
and reliability. Also, RabbitMQ is easily horizontally scalable, which means we can easily handle the heavy load by
simply adding more nodes to the cluster.

For the worker, we went ahead with a normal python worker, which simply runs a process and loads all the required
data in its memory. As soon as the worker starts, it listens on a RabbitMQ queue named submission_task_queue
for new submission messages.

6.3 Submission Worker

The submission worker are responsible for processing submission messages. It listens on a queue named
submission_task_queue, and on receiving a message for a submission, it processes and evaluates the sub-
mission.

One of the major design changes that we decided to implement in the submission worker was to load all the data
related to the challenge in the worker’s memory, instead of fetching it every time a new submission message arrives.
So the worker, when starting, fetches the list of active challenges from the database and then loads it into memory by
maintaining the map EVALUATION_SCRIPTS on challenge id. This was actually a major performance improvement.

Another major design change that we incorporated here was to dynamically import the challenge module and to load
it in the map instead of invoking a new python process every time a submission message arrives. So now whenever a
new message for a submission is received, we already have its corresponding challenge module being loaded in a map
called EVALUATION_SCRIPTS, and we just need to call

EVALUATION_SCRIPTS[challenge_id].evaluate(*params)

This was again a major performance improvement, which saved us from the task of invoking and managing Python
processes to evaluate submission messages. Also, invoking a new python process every time for a new submission
would have been really slow.

24 Chapter 6. Architectural Decisions

CHAPTER 7

Directory Structure

7.1 Django Apps

EvalAI is a Django-based application, hence it leverages the concept of Django apps to properly namespace the
functionalities. All the apps can be found in the apps directory situated in the root folder.

Some important apps along with their main uses are:

• Challenges

This app handles all the workflow related to creating, modifying, and deleting challenges.

• Hosts

This app is responsible for providing functionalities to the challenge hosts/organizers.

• Participants

This app serves users who want to take part in any challenge. It contains code for creating a Participant Team, through
which they can participate in any challenge.

• Jobs

One of the most important apps, responsible for processing and evaluating submissions made by participants. It
contains code for creating a submission, changing the visibility of the submission and populating the leaderboard for
any challenge.

• Web

This app serves some basic functionalities like providing support for contact us or adding a new contributor to the
team, etc.

• Accounts

As the name indicates, this app deals with storing and managing data related to user accounts.

• Base

A placeholder app which contains the code that is used across various other apps.

7.2 Settings

Settings are used across the backend codebase by Django to provide config values on a per-environment basis. Cur-
rently, the following settings are available:

• dev

25

EvalAI Documentation, Release 1.1

Used in development environment

• testing

Used whenever test cases are run

• staging

Used on staging server

• production

Used on production server

7.3 URLs

The base URLs for the project are present in evalai/urls.py. This file includes URLs of various applications,
which are also namespaced by the app name. So URLs for the challenges app will have its app namespace in the
URL as challenges. This actually helps us separate our API based on the app.

7.4 Frontend

The whole codebase for the frontend resides in a folder named frontend in the root directory

7.5 Scripts

Scripts contain various helper scripts, utilities, python workers. It contains the following folders:

• migration

Contains some of the scripts which are used for one-time migration or formatting of data.

• tools

A folder for storing helper scripts, e.g. a script to fetch pull request

• workers

One of the main directories, which contains the code for submission worker. Submission worker is a normal python
worker which is responsible for processing and evaluating submission of a user. The command to start a worker is:

python scripts/workers/submission_worker.py

7.6 Test Suite

All of the codebase related to testing resides in tests folder in the root directory. In this directory, tests are names-
paced according to the app, e.g. tests for challenges app lives in a folder named challenges.

26 Chapter 7. Directory Structure

EvalAI Documentation, Release 1.1

7.7 Management Commands

To perform certain actions like seeding the database, we use Django management commands. Since the management
commands are common throughout the project, they are present in base application directory. At the moment, the
only management command is seed, which is used to populate the database with some random values. The command
can be invoked by calling

python manage.py seed

7.7. Management Commands 27

EvalAI Documentation, Release 1.1

28 Chapter 7. Directory Structure

CHAPTER 8

Tutorial to participate in a challenge in EvalAI

Participating in EvalAI is really easy. One just needs to create an account and a participant team in order to participate
in a challenge.

If you are already familiar with the flow of EvalAI, you may want to skip this section else please follow the following
steps to participate in a challenge (VQA Challenge 2017 in this example):

8.1 1. Visit evalai.cloudcv.org

Open EvalAI website.

8.2 2. Sign up or Log in

Sign Up and fill in your credentials or log in if you have already registered.

After signing up you would be on the dashboard page.

8.3 4. Choose challenge

Then, go to challenges section and choose an active challenge.

8.4 5. Challenge Page

After reading the challenge instructions on the challenge page, you can participate in the challenge.

8.5 6. Create Participant Team

Create a participant team if there isn’t any or you can select from the existing ones.

Click on ‘Participate’ tab after selecting a team.

Tada! you have successfully participated in a challenge.

29

https://evalai.cloudcv.org/

EvalAI Documentation, Release 1.1

30 Chapter 8. Tutorial to participate in a challenge in EvalAI

CHAPTER 9

Frequently Asked Questions

9.1 Q. How to start contributing?

EvalAI’s issue tracker is good place to start. If you find something that interests you, comment on the thread and we’ll
help get you started. Alternatively, if you come across a new bug on the site, please file a new issue and comment if
you would like to be assigned. Existing issues are tagged with one or more labels, based on the part of the website it
touches, its importance etc., which can help you select one.

9.2 Q. What are the technologies that EvalAI uses?

9.2.1 Django

Django is the heart of the application, which powers our backend. We use Django version 1.10.

9.2.2 Django Rest Framework

We use Django Rest Framework for writing and providing REST APIs. It’s permission and serializers have helped
write a maintainable codebase.

9.2.3 RabbitMQ

We currently use RabbitMQ for queueing submission messages which are then later on processed by a Python worker.

9.2.4 PostgreSQL

PostgresSQL is used as our primary datastore. All our tables currently reside in a single database named evalai.

9.2.5 Angular JS - ^1.6.1

Angular JS is a well-known framework that powers our frontend.

31

EvalAI Documentation, Release 1.1

9.3 Q. Where could I learn Github Commands?

Refer to Github Guide.

9.4 Q. Where could I learn Markdown?

Refer to MarkDown Guide.

9.5 Q. What to do when coverage decreases in your pull request?

Coverage decreases when the existing test cases don’t test the new code you wrote. If you click coverage, you can see
exactly which all parts aren’t covered and you can write new tests to test the parts.

9.6 Common Errors during installation

9.6.1 Q. While using pip install -r dev/requirement.txt

Writing manifest file 'pip-egg-info/psycopg2.egg-info/SOURCES.txt'
Error: You need to install postgresql-server-dev-X.Y for building a server-side
→˓extension or
libpq-dev for building a client-side application.
--
Command "python setup.py egg_info" failed with error code 1 in /tmp/pip-build-qIjU8G/
→˓psycopg2/

Use the following commands in order to solve the error:

1. sudo apt-get install postgresql

2. sudo apt-get install python-psycopg2

3. sudo apt-get install libpq-dev

9.6.2 Q. While using pip install -r dev/requirement.txt

Command “python setup.py egg_info” failed with error code 1 in
/private/var/folders/c7/b45s17816zn_b1dh3g7yzxrm0000gn/T/pip-build- GM2AG/psycopg2/

Firstly check that you have installed all the mentioned dependencies. Then, Upgrade the version of postgresql to 10.1
in order to solve it.

9.6.3 Q. Getting an import error

Couldn't import Django,"when using command python manage.py migrate

Firstly, check that you have activated the virtualenv. Install python dependencies using the following commands on
the command line

32 Chapter 9. Frequently Asked Questions

https://help.github.com/articles/git-and-github-learning-resources/
https://guides.github.com/features/mastering-markdown/

EvalAI Documentation, Release 1.1

cd evalai
pip install -r requirements/dev.txt

9.6.4 Q. Getting Mocha Error

Can not load reporter “mocha”,it is not registered

Uninstall karma and then install

npm uninstall -g generator-karma && npm install -g generator-angular.

9.6.5 Q. While trying to execute bower install

bower: command not found

Execute the following command first :

npm install -g bower

9.6.6 Q. While trying to execute gulp dev:runserver

gulp: command not found

Execute the following command first

npm install -g gulp-cli

9.6.7 Q. While executing gulp dev:runserver

events.js:160
throw er; // Unhandled 'error' event
^
Error: Gem sass is not installed.

Execute the following command first :

gem install sass

9.6.8 Q. While trying to install npm config set proxy http://proxy:port on
UBUNTU, I get the following error:

ubuntu@ubuntu-Inspiron-3521:~/Desktop/Python-2.7.14$ npm install -g angular-cli
npm ERR! Linux 4.4.0-21-generic
npm ERR! argv "/usr/bin/nodejs" "/usr/bin/npm" "install" "-g" "angular-cli"
npm ERR! node v4.2.6
npm ERR! npm v3.5.2
npm ERR! code ECONNRESET

9.6. Common Errors during installation 33

EvalAI Documentation, Release 1.1

npm ERR! network tunneling socket could not be established, cause=getaddrinfo
→˓ENOTFOUND proxy proxy:80
npm ERR! network This is most likely not a problem with npm itself
npm ERR! network and is related to network connectivity.
npm ERR! network In most cases you are behind a proxy or have bad network settings.
npm ERR! network
npm ERR! network If you are behind a proxy, please make sure that the
npm ERR! network 'proxy' config is set properly. See: 'npm help config'

npm ERR! Please include the following file with any support request:
npm ERR! /home/ubuntu/Desktop/Python-2.7.14/npm-debug.log

To solve, execute the following commands:

1. npm config set registry=registry.npmjs.org

If the above does not work, try deleting them by following commands:

1. npm config delete proxy

2. npm config delete https-proxy

Then, start the instllation process of frontend once more.

9.6.9 Q. While using docker, I am getting the following error on URL
http://localhost:8888/

Cannot Get \

Try removing the docker containers and then building them again.

9.6.10 Q. Getting the following error while running python manage.py seed

Starting the database seeder. Hang on... Exception while running run() in 'scripts.
→˓seed' Database successfully seeded

Change the pyhton version to 2.7.x . The problem might be because of the pyhton 3.0 version.

9.6.11 Q. Getting the following error while executing command createdb evalai
-U postgres

createdb: could not connect to database template1: FATAL: Peer authentication failed
→˓for user "postgres"

Try creating a new user and then grant all the privileges to it and then create a db.

9.6.12 Q. Getting the following error while executing npm install

npm WARN generator-angular@0.16.0 requires a peer of generator-
karma@>=0.9.0 but none was installed.

34 Chapter 9. Frequently Asked Questions

EvalAI Documentation, Release 1.1

Uninstall and then install karma again and also don’t forget to clean the global as well as project npm cache. Then try
again the step 8.

9.6. Common Errors during installation 35

EvalAI Documentation, Release 1.1

36 Chapter 9. Frequently Asked Questions

CHAPTER 10

Migrations

Migrations are Django’s way of propagating changes you make to your models (adding a field, deleting a
model, etc.) into your database schema. They’re designed to be mostly automatic, but you’ll need to know
when to make migrations, when to run them, and the common problems you might run into. - Django
Migration Docs

10.1 Creating a migration

• We recommend you to create migrations per app, where the changes are only about a single issue or feature.

migration only for jobs app
python manage.py makemigrations jobs

• Always create named migrations. You can name migrations by passing -n or --name argument

python manage.py makemigrations jobs -n=execution_time_limit
or
python manage.py makemigrations jobs --name=execution_time_limit

• While creating migrations on local environment, don’t forget to add development settings.

python manage.py makemigrations

The following is an example of a complete named migration for the jobs app, wherein a execution time limit field is
added to the Submission model:

python manage.py makemigrations jobs --name=execution_time_limit

• Files create after running makemigrations should be committed along with other files

• While creating a migration for your concerned change, it may happen that some other changes are also there
in the migration file. Like adding a execution_time_limit field on Submission model also brings in
the change for when_made_public being added. In that case, open an new issue and clearly mention the
issue over there. If possible fix the issue yourself, by opening a new branch and creating migrations only for the
concerned part. The idea here is that a commit should only include its concerned migration changes and nothing
else.

37

https://docs.djangoproject.com/en/1.10/topics/migrations/#module-django.db.migrations
https://github.com/Cloud-CV/EvalAI/issues/new

EvalAI Documentation, Release 1.1

38 Chapter 10. Migrations

CHAPTER 11

Contributing guidelines

Thank you for your interest in contributing to EvalAI! Here are a few pointers on how you can help.

11.1 Setting things up

To set up the development environment, follow the instructions in our README.

11.2 Finding something to work on

EvalAI’s issue tracker is good place to start. If you find something that interests you, comment on the thread and we’ll
help get you started.

Alternatively, if you come across a new bug on the site, please file a new issue and comment if you would like to be
assigned. Existing issues are tagged with one or more labels, based on the part of the website it touches, its importance
etc., which can help you select one.

If neither of these seem appealing, please post on our channel and we will help find you something else to work on.

11.3 Instructions to submit code

Before you submit code, please talk to us via the issue tracker so we know you are working on it.

Our central development branch is development. Coding is done on feature branches based off of development and
merged into it once stable and reviewed. To submit code, follow these steps:

1. Create a new branch off of development. Select a descriptive branch name. We highly encourage you to use
autopep8 to follow the PEP8 styling. Run the following command before creating the pull request:

autopep8 --in-place --exclude venv,docs --recursive .

git fetch upstream
git checkout master
git merge upstream/master
git checkout -b your-branch-name

2. Commit and push code to your branch:

• Commits should be self-contained and contain a descriptive commit message.

39

EvalAI Documentation, Release 1.1

• Please make sure your code is well-formatted and adheres to PEP8 conventions (for Python) and the airbnb
style guide (for JavaScript). For others (Lua, prototxt etc.) please ensure that the code is well-formatted
and the style consistent.

• Please ensure that your code is well tested.

git commit -a -m “{{commit_message}}”
git push origin {{branch_name}}

3. Once the code is pushed, create a pull request:

• On your Github fork, select your branch and click “New pull request”. Select “master” as the base branch
and your branch in the “compare” dropdown. If the code is mergeable (you get a message saying “Able to
merge”), go ahead and create the pull request.

• Check back after some time to see if the Travis checks have passed, if not you should click on “Details”
link on your PR thread at the right of “The Travis CI build failed”, which will take you to the dashboard
for your PR. You will see what failed / stalled, and will need to resolve them.

• If your checks have passed, your PR will be assigned a reviewer who will review your code and provide
comments. Please address each review comment by pushing new commits to the same branch (the PR will
automatically update, so you don’t need to submit a new one). Once you are done, comment below each
review comment marking it as “Done”. Feel free to use the thread to have a discussion about comments
that you don’t understand completely or don’t agree with.

• Once all comments are addressed, the reviewer will give an LGTM (‘looks good to me’) and merge the
PR.

Congratulations, you have successfully contributed to Project EvalAI!

40 Chapter 11. Contributing guidelines

CHAPTER 12

Pull Request

Contributing to EvalAI is really easy. Just follow these steps to get started.

Step 1: Fork

1. Fork the EvalAI repository from the repository.

Step 2: Selecting an issue

1. Select a suitable issue that will be easy for you to fix. Moreover, you can also take the issues based on their
labels. All the issues are labelled according to its difficulty.

2. After selecting an issue, ask the maintainers of the project to assign it to you and they will assign it based on its
availability.

3. Once it gets assigned, create a branch from your fork’s updated master branch using the following command:
git checkout -b branch_name

4. Start working on the issue.

Step 3: Committing Your Changes

1. After making the changes, you need to add your files to your local git repository.

2. To add your files, use the following commands:

• To add only modified files, use git add -u

• To add a new file, use git add file_path_from_local_git_repository

• To add all files, use git add .

1. Once you have added your files, you need to commit your changes. Always create a very meaningful commit
message related to the changes that you have done. Try to write the commit message in present imperative
tense. Also namespace the commit message so that it becomes self-explanatory by just looking at the
commit message. For example,

Docs: Add verbose setup docs for ubuntu

Step 4: Creating a Pull Request

1. Before creating a Pull Request, you need to first rebase your branch with the upstream master.

2. To rebase your branch, use following commands: git fetch upstream git rebase
upstream/master

3. After rebasing, push the changes to your forked repository. git push origin branch_name

4. After pushing the code, create a Pull Request.

41

https://github.com/Cloud-CV/EvalAI
https://git-scm.com/docs/git-checkout
https://help.github.com/articles/about-pull-requests/
http://stackoverflow.com/questions/9257533/what-is-the-difference-between-origin-and-upstream-on-github
https://git-scm.com/book/en/v2/Git-Branching-Rebasing

EvalAI Documentation, Release 1.1

5. When creating a pull request, be sure to add a comment including these keywords, and also mention any main-
tainer to reviewing it.

Note:

• If you have any doubts, don’t hestitate to ask in the comments. You may also add in any relevant content.

• After the maintainers review your changes, fix the code as suggested. Don’t forget to add, commit, and push
your code to the same branch.

Once you have completed the above steps, you have successfully created a Pull Request to EvalAI.

42 Chapter 12. Pull Request

https://help.github.com/articles/closing-issues-via-commit-messages/

CHAPTER 13

Glossary

13.1 Challenge

An event, run by an institute or organization, wherein a number of researchers, students, and data scientists participate
and compete with each other over a period of time. Each challenge has a start time and generally an end time too.

13.2 Challenge Host

A member of the host team who organizes a challenge. In our system, it is a form of representing a user. This user can
be in the organizing team of many challenges, and hence for each challenge, its challenge host will be different.

13.3 Challenge Host Team

A group of challenge hosts who organizes a challenge. They are identified by a unique team name.

13.4 Challenge Phase Split

A challenge phase split is the relation between a challenge phase and dataset splits for a challenge with a many-to-
many relation. This is used to set the privacy of submissions (public/private) to different dataset splits for different
challenge phases.

13.5 Dataset

A dataset in EvalAI is the main entity in which an AI challenge is based on. Participants are expected to make
submissions corresponding to different splits of the corresponding dataset.

13.6 Dataset Split

A dataset is generally divided into different parts called dataset split. Generally, a dataset has three different splits:

• Training set

43

EvalAI Documentation, Release 1.1

• Validation set

• Test set

13.7 EvalAI

EvalAI is an open-source web platform that aims to be the state of the art in AI. Its goal is to help AI researchers,
practitioners, and students to host, collaborate, and participate in AI challenges organized around the globe.

13.8 Leaderboard

The leaderboard can be defined as a scoreboard listing the names of the teams along with their current scores. Cur-
rently, each challenge has its own leaderboard.

13.9 Phase

A challenge can be divided into many phases (or challenge phases). A challenge phase can have the same or different
start and end date than the challenge start and end date.

13.10 Participant

A member of the team competing against other teams for any particular challenge. It is a form of representing a user.
A user can participate in many challenges, hence for each challenge, its participant entry will be different.

13.11 Participant Team

A group of one or more participants who are taking part in a challenge. They are identified uniquely by a team name.

13.12 Submission

A way of submitting your results to the platform, so that it can be evaluated and ranked amongst others. A submission
can be public or private, depending on the challenge.

13.13 Submission Worker

A python script which processes submission messages received from a queue. It does the heavy lifting task of receiving
a submission, performing mandatory checks, and then evaluating the submission and updating its status in the database.

13.14 Team

A model, present in web app, which helps CloudCV register new contributors as a core team member or simply an
open source contributor.

44 Chapter 13. Glossary

EvalAI Documentation, Release 1.1

13.15 Test Annotation File

This is generally a file uploaded by a challenge host and is associated with a challenge phase. This file is used for
ranking the submission made by a participant. An annotation file can be shared by more than one challenge phase. In
the codebase, this is present as a file field attached to challenge phase model.

13.15. Test Annotation File 45

EvalAI Documentation, Release 1.1

46 Chapter 13. Glossary

CHAPTER 14

Indices and tables

• genindex

• modindex

• search

47

	How to setup
	Installation using Docker
	Ubuntu Installation Instructions
	Fedora Installation Instructions
	Windows Installation Instructions

	Creating a Challenge
	Challenge creation using zip configuration
	Create challenge using web interface

	Writing Evaluation Script
	Submission
	How is a submission processed?
	How does submission worker function?
	How is submission made?
	Format of submission messages
	How workers process submission message
	Notes

	Architecture
	Technologies that the project uses:

	Architectural Decisions
	URL Patterns
	Processing submission messages asynchronously
	Submission Worker

	Directory Structure
	Django Apps
	Settings
	URLs
	Frontend
	Scripts
	Test Suite
	Management Commands

	Tutorial to participate in a challenge in EvalAI
	1. Visit evalai.cloudcv.org
	2. Sign up or Log in
	4. Choose challenge
	5. Challenge Page
	6. Create Participant Team

	Frequently Asked Questions
	Q. How to start contributing?
	Q. What are the technologies that EvalAI uses?
	Q. Where could I learn Github Commands?
	Q. Where could I learn Markdown?
	Q. What to do when coverage decreases in your pull request?
	Common Errors during installation

	Migrations
	Creating a migration

	Contributing guidelines
	Setting things up
	Finding something to work on
	Instructions to submit code

	Pull Request
	Glossary
	Challenge
	Challenge Host
	Challenge Host Team
	Challenge Phase Split
	Dataset
	Dataset Split
	EvalAI
	Leaderboard
	Phase
	Participant
	Participant Team
	Submission
	Submission Worker
	Team
	Test Annotation File

	Indices and tables

